

High-efficiency heat recovery units

RECF BS	Low profile Installation in false ceiling
RECF H	Roof installation

RECF BS

DECACLIMA

Innovation in air conditioning and air quality equipment

Request a **quote**, with no obligation

Our technical team will advise you to find the solution best suited to your needs. DECACLIMA is specialised in air-conditioning and air treatment equipment and solutions, offering optimised units with smart controls for projects that need custom solutions with high technical requirements.

It stands out for its customer orientation, providing value, innovation and efficiency in every design and unit it develops.

The quality procedures used by DECACLIMA are certified by BUREAU VERITAS in accordance with ISO 9001.

Air treatment, sustainability and energy efficiency

DECACLIMA's commitment to sustainability is reflected in the design of efficient products and in our adherence to a strategy that focuses on reducing our carbon footprint, waste and environmental impacts.

DECACLIMA's heat recovery units are the ideal solution for obtaining complete air treatment in indoor spaces and achieving great energy savings.

Such solutions facilitate the renewal of air in buildings, while conditioning the air and saving energy in the process. They are outstanding as one of the most effective solutions for achieving energy efficiency and improving air quality in indoor spaces.

Energy savings and natural resources Improved energy efficiency Reduction of noise pollution Reduction of CO₂ emissions

Efficiency table of filters for heat recovery units:

	ISO 16890								
FILTER	ePM ₁	ePM _{2.5}	ePM ₁₀	ISO COARSE					
G4	_	_	_	> 60%					
M6	> 40%	50-60%	> 60%	_					
F7	50-70%	> 65%	> 80%	-					
F8	70-80%	> 80%	> 90%	_					
F9	> 80%	> 90%	> 95%	_					

*Am: Average performance against synthetic dust. / *Em: Average efficacy against particles measuring 0.4 μm. The possibility of including multiple filtration stages in a single heat recovery unit allows complying with the regulations of various countries.

Heat recovery units have two fans with a low noise level. One extracts the stale air from the indoor space and the other blows in fresh air from outdoors to the interior of the premises. These two air flows cross without mixing in a heat exchanger, thereby transferring the temperature of the air in the process.

Energy savings

Equipment with EC technology motors that can be regulated with a 0-10 V sensor.

🔗 Durability

Finished with covers made of pre-finished metal sheet and aluminium profiles to allow installation in high-corrosion areas. For outdoor applications, the installation of a canopy roof is recommended.

Low noise level

They have high-quality insulating materials and an acoustic casing of 25 or 50 mm, depending on the model, for noise reduction.

Easy installation and maintenance

They have pre-configured control for direct start-up, interchangeable nozzles and easy access to the inspection cover. Ideal for roofs, technical rooms or false ceilings due to their low profile.

Heat exchanger

Counterflow plates

85-90% thermal efficiency. With no leaks between air circuits. High efficiency.

Types of installation

In false ceiling Equipment with a low profile.

Cross-flow panels

60-75% thermal efficiency. With no leaks between air circuits. Compact and economical. The heat exchanger is a component of heat recovery units that allows recovering a large part of the heat energy from the air that is exhausted outside and taking advantage of it to heat or cool the clean air that is blown inside a building.

On the roof Equipment that can work outdoors.

In technical room Compact equipment.

6

13

DECACLIMA manufactures reliable and efficient heat recovery units, designed to meet the needs of highly demanding sectors

Low-profile and high-efficiency heat recovery units for applications that require high pressure

RECF BS series

High-efficiency and high-performance heat recovery units, with Plug Fan EC Technology, a counterflow plate heat exchanger and automatic control for installation in false ceilings.

Horizontal, high-efficiency heat recovery units for applications that require high pressure

RECF H series

High-efficiency heat recovery units, with Plug Fan EC Technology, a counterflow plate heat exchanger and automatic control for installation on roofs or in technical rooms.

Low-profile and high-efficiency heat recovery units for applications that require high pressure

RECF BS series

High-efficiency and high-performance heat recovery units, with Plug Fan EC Technology, a counterflow plate heat exchanger and automatic control for installation in false ceilings.

Common characteristics

- EC Type Plug Fans regulated via 0-10 V signal.
- Thermal efficiency of the unit is 85-90%.
- High-quality reinforced aluminium frame structure.
- Panels with 50-mm thick thermal and acoustic insulation of mineral wool; exterior made of prefinished sheet.
- High efficiency filtration: M6 (ePM10 70%) + F8 (ePM1 70%).
- Ample access for maintenance.
- Free cooling with motorised BY-PASS hatch.
- Condensate collection and drainage tray made of AISI 304 stainless steel.

Finish

- Aluminium frame and external prefinished sheet structure.
- Panels with 25-mm thick thermal and acoustic insulation.
- Low profile for installation in false ceilings.
- Interchangeable nozzles for better adaptation.

On request

- External coil modules for air treatment.
- Special efficacy filters.
- Modules with UVc germicidal chamber.

Built-in control panel

- Free cooling control by means of a motorised BY-PASS.
- Fan speed control by manual selection or by optional external sensors (CO₂ or pressure).
- Built-in control system with remote control panel.
- STOP/START and speed control available through control panel or external contacts.
- Built-in temperature sensors.
- Filter status control by means of built-in pressure switches.
- Management of fault alarms and fire alarm shutdown.
- Compatible with MODBUS RTU.

*Đ***ECACLIMA**

Characteristics according to sizes

	RECF 0.8 BS	RECF 1.2 BS	RECF 1.6 BS	RECF 2.1 BS	RECF 2.7 BS
SUPPLY FILTER (ODA)	M6 (ePM10 70%) + F8 (ePM1 70%)				
EXHAUST FILTER (ETA)	M6 (ePM10 70%)				
FREE COOLING FUNCTION BY MEANS OF MOTORISED BY-PASS	YES	YES	YES	YES	YES
PANEL THICKNESS	25 mm				
CONDENSATE DISCHARGE	YES	YES	YES	YES	YES
PRESSURE SWITCH TO CONTROL THE STATUS OF BUILT-IN FILTERS	YES	YES	YES	YES	YES
SAFETY AND MAINTENANCE SWITCH	YES	YES	YES	YES	YES
BUILT-IN CONTROL PANEL	YES	YES	YES	YES	YES

Technical characteristics

Model	Nominal flow rate	Recovery unit efficiency	Available pressure	Nominal power	Nominal current	Voltage 50/60 Hz	Irradiated sound level at 5 m	Approx. weight
	(m³/h)	(%)	(Pa)	(kW)	(A)	(V)	dB (A)	(kg)
RECF 0.8 BS	800	86.5	70	0.39	2.91	1/230	45	78
RECF 1.2 BS	1200	86.8	70	0.32	1.16	1/230	34	105
RECF 1.6 BS	1600	86.2	100	0.53	2.11	1/230	40	178
RECF 2.1 BS	2100	88.0	100	0.76	3.14	1/230	43	216
RECF 2.7 BS	2700	86.9	100	1.23	5.17	1/230	50	216

Dimensions mm

	Α	B1	B2	С	D1	D2	D3	Е	G1	G2	d
RECF 0.8 BS	684	1644	1694	357	1664	704	832	25	320	182	200
RECF 1.2 BS	1124	1890	1940	480	1910	1144	955	25	695	214	315
RECF 1.6 BS	1250	1970	2020	480	1990	1270	995	25	781	235	355
RECF 2.1 BS	1250	2198	2248	620	2218	1270	1109	25	736	257	400
RECF 2.7 BS	1250	2198	2248	620	2218	1270	1109	25	736	257	400

ODA: External fresh air/SUP: Delivery of air to premises/EHA: Exit of stale air/ETA: Air exhaust from premises

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH_2O , Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH₂0, Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH₂0, Pa and inwg

Efficiency curves

Dimensions of coils in mm

Model	Width	Height	Duct
RECF 0.8 BS	707	358	464
RECF 1.2 BS	867	482	464
RECF 1.6 BS	887	502	464
RECF 2.1 BS	917	652	564
RECF 2.7 BS	917	652	564

External coil modules for heating

MODULES WITH ELECTRIC HEATING ELEMENTS

These are outdoor modules with electric heating elements that can be included for pre-heating or post-heating the air.

		PRE-HEATING	G	POST-HEATING		
Model	Power	Power supply	Power supply Current		Power supply	Current
	(kW)	(V)	(A)	(kW)	(V)	(A)
RECF 0.8 BS	2	3 x 400	3.6	3	3 x 400	4.8
RECF 1.2 BS	3	3 x 400	4.8	3	3 x 400	4.8
RECF 1.6 BS	4.5	3 x 400	4.6	4.5	3 x 400	4.6
RECF 2.1 BS	6	3 x 400	9.6	6	3 x 400	9.6
RECF 2.7 BS	9	3 x 400	14.5	6	3 x 400	9.6

MODULES WITH HEATING/COOLING COILS

Using water as the heat-carrying fluid, these modules can be connected to the equipment, or they can be installed in ducts for treating the incoming or outgoing air from the heat recovery units.

HEATING COILS

			PRE-HEATING		
	Temp. Water inlet,	outlet: 45 °C/40 °C		Temp. Air inlet: -5 °C	
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)
RECF 0.8 BS	800	6.07	41	8.3	1056
RECF 1.2 BS	1200	9.57	35	13.5	1665
RECF 1.6 BS	1600	13.51	28	25.7	2349
RECF 2.1 BS	2100	18.08	26	29.7	3145
RECF 2.7 BS	2700	21.41	37	17.6	3724

	PRE-HEATING								
	Temp. Water inlet/o	outlet: 65 °C/55 °C		Temp. Air inlet: -5 °C					
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate				
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)				
RECF 0.8 BS	800	8.22	41	5.5	721				
RECF 1.2 BS	1200	13.17	35	14.1	1155				
RECF 1.6 BS	1600	18.55	28	17.4	1627				
RECF 2.1 BS	2500	28.07	33	22.3	2462				
RECF 2.7 BS	2700	29.63	37	24.6	2599				

HEATING COILS

HEATING COILS			POST-HEATING				
	Temp. Water inlet/o	outlet: 45 °C/40 °C		Temp. Air inlet: 16 °C			
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate		
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)		
RECF 0.8 BS	800	3.03	42	13.6	527		
RECF 1.2 BS	1200	4.54	36	12.8	790		
RECF 1.6 BS	1600	5.84	29	8.9	1016		
RECF 2.1 BS	2100	7.95	26	11.6	1383		
RECF 2.7 BS	2700	10.22	38	18.1	1778		

	POST-HEATING								
	Temp. Water inlet/	outlet: 65 °C/50 °C		Temp. Air inlet: 16 °C					
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate				
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)				
RECF 0.8 BS	800	5.71	42	10.8	475				
RECF 1.2 BS	1200	7.79	36	9.8	684				
RECF 1.6 BS	1600	9.09	29	19	797				
RECF 2.1 BS	2100	12.22	26	8.1	1071				
RECF 2.7 BS	2700	16.35	38	11.5	1434				

COOLIN	G COIL	S
--------	--------	---

			POST-COOLING				
	Temp. Water inlet	/outlet: 7 °C/12 °C	Temp. Air inlet: 26 °C				
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate		
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)		
RECF 0.8 BS	800	1.35	34	3.7	131		
RECF 1.2 BS	1200	2.73	35	14.2	469		
RECF 1.6 BS	1600	5.14	58	8.5	881		
RECF 2.1 BS	2100	9.8	53	33.5	1681		
RECF 2.7 BS	2700	10.48	59.2	20.2	1797		

MODULES WITH DIRECT EXPANSION COILS FOR HEATING/COOLING

Using R410a or R32a refrigerant as the heat-carrying fluid, these modules can be connected to the equipment or they can be installed in the duct, depending on the installation needs. They can be connected to VRF equipment.

		POST-HEATING	POST-COOLING			
	Temp. Cond 45 °	lensation: C	Air inlet temp.: 16 °C	Temp. Evaporation: 8 °C	Air inlet temp.: 26 °C	
Model	Flow rate	Power	Air load loss	Power		
	(m³/h)	(kW)	(Pa)	(kW)	(Pa)	
RECF 0.8 BS	800	3.25	39	2.3	37	
RECF 1.2 BS	1200	4.43	33	3.4	32	
RECF 1.6 BS	1600	7.03	27	4.71	26	
RECF 2.1 BS	2100	9.64	24	9.41	25	
RECF 2.7 BS	2700	10.57	35	10.77	36	

Horizontal, high-efficiency heat recovery units for applications that require high pressure

RECF H series

High-efficiency heat recovery units with Plug Fan EC Technology, a counterflow plate heat exchanger and automatic control for installation on roofs or in technical rooms.

Finish

- Aluminium frame and external prefinished sheet structure.
- Panels with 25-mm thick thermal and acoustic insulation up to model 3000.
- Panels with 50-mm thick thermal and acoustic insulation beginning with model 4500.

On request

- External coil modules for air treatment.
- Special efficacy filters.
- Modules with UVc germicidal chamber.

Common characteristics

- EC Type Plug Fans regulated via 0-10 V signal.
- Built-in maintenance section switch.
- Thermal efficiency of the unit is 85-90%.
- High-quality reinforced aluminium frame structure.
- Panels with thermal and acoustic insulation; exterior made of prefinished sheet.
- XPS type panels with thermal bridge break.
- G4 pre-filter (ISO COARSE 60%) + M6 filter (ePM10 70%) on the air supply side.
- High-efficiency F8 filtration (ePM1 70%) on the supply air.
- Ample access for maintenance.
- Free cooling with motorised BY-PASS hatch.
- Condensate collection and drainage tray.

Built-in control panel

- Free cooling control by means of a motorised BY-PASS.
- Fan speed control by manual selection or by optional external sensors (CO₂ or pressure).
- Built-in control system with remote control panel.
- STOP/START and speed control available on a panel.
- Built-in temperature sensors.
- Filter status control by means of built-in pressure switches.
- Management of fault alarms and fire alarm shutdown.
- Compatible with MODBUS RTU.

Characteristics according to sizes

	RECF 1.2 H	RECF 1.6 H	RECF 2.1 H	RECF 2.7 H
SUPPLY FILTER (ODA)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)
SUPPLY FILTER (SUP)	F8 (ePM1 70%) / F9 (ePM1 80%)			
EXHAUST FILTER (ETA)	M6 (ePM10 70%)	M6 (ePM10 70%)	M6 (ePM10 70%)	M6 (ePM10 70%)
FREE COOLING FUNCTION BY MEANS OF MOTORISED BY-PASS	YES	YES	YES	YES
PANEL THICKNESS	25 mm	25 mm	25 mm	25 mm
CONDENSATE DISCHARGE	YES	YES	YES	YES
PRESSURE SWITCH TO CONTROL THE STATUS OF BUILT-IN FILTERS	YES	YES	YES	YES
SAFETY AND MAINTENANCE SWITCH	YES	YES	YES	YES
BUILT-IN CONTROL PANEL	YES	YES	YES	YES

	RECF 3.3 H	RECF 4.5 H	RECF 6.0 H	RECF 8.0 H	RECF 10.0 H
SUPPLY FILTER (ODA)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)	G4 (ISO COARSE 60%) + M6 (ePM10 70%) / F7 (ePM1 55%)
SUPPLY FILTER (SUP)	F8 (ePM1 70%) / F9 (ePM1 80%)				
EXHAUST FILTER (ETA)	M6 (ePM10 70%)				
FREE COOLING FUNCTION BY MEANS OF MOTORISED BY-PASS	YES	YES	YES	YES	YES
PANEL THICKNESS	50 mm				
CONDENSATE DISCHARGE	YES	YES	YES	YES	YES
PRESSURE SWITCH TO CONTROL THE STATUS OF BUILT-IN FILTERS	YES	YES	YES	YES	YES
SAFETY AND MAINTENANCE SWITCH	YES	YES	YES	YES	YES
BUILT-IN CONTROL PANEL	YES	YES	YES	YES	YES

Technical characteristics

Model	Nominal flow rate	Recovery unit efficiency	Available pressure	Nominal power	Nominal current	Voltage 50/60 Hz	Irradiated sound level at 5 m	Approx. weight
	(m³/h)	(%)	(Pa)	(kW)	(A)	(V)	dB (A)	(kg)
RECF 1.2 H	1200	90	200	0.45	1.78	1/230	37	210
RECF 1.6 H	1600	88.8	200	0.63	2.54	1/230	40	210
RECF 2.1 H	2100	88.8	200	0.82	1.48	3+N/400	43	281
RECF 2.7 H	2700	87.8	200	1.11	1.88	3+N/400	46	281
RECF 3.3 H	3300	88.8	300	1.68	2.65	3+N/400	50	324
RECF 4.5 H	4500	88.6	300	2.53	4.34	3+N/400	57	342
RECF 6.0 H	6000	89.1	300	2.55	4.26	3+N/400	47	385
RECF 8.0 H	8000	88	300	4.04	6.41	3+N/400	51	385
RECF 10.0 H	10000	87	300	6.11	9.38	3+N/400	56	385

*Đ***ECACLIMA**

Dimensions mm

~ ~ ~ ~ .

	Α	В	С	D	E	F	G1	G2	G3	H1	H2	I
RECF 1.2 H	566	2213	1507	1387	1030	120	672	355	283	637	647	492
RECF 1.6 H	566	2213	1507	1387	1030	120	672	355	283	637	647	492
RECF 2.1 H	669	2213	1507	1387	1030	120	672	355	335	637	647	595
RECF 2.7 H	669	2213	1507	1387	1030	120	672	355	335	637	647	595
RECF 3.3 H	992	2250	1544	1424	1048	120	677	374	496	637	637	881
RECF 4.5 H	1297	2250	1544	1424	1048	120	677	374	649	637	637	1186
RECF 6.0 H	1889	2250	1544	1424	1048	120	677	374	945	637	637	1778
RECF 8.0 H	1889	2250	1544	1424	1048	120	677	374	945	637	637	1778
RECF 10.0 H	1889	2250	1544	1424	1048	120	677	374	945	637	637	1778

ODA: External fresh air/SUP: Delivery of air to premises/EHA: Exit of stale air/ETA: Air exhaust from premises

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH_2^{0} , Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH_2O , Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH_2^0 , Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH₂0, Pa and inwg

Q = Flow rate in m³/h, m³/s and cfm

Pe = Static pressure in mmH_2^{0} , Pa and inwg

Efficiency curves

Model	Width	Height	Duct	Model	Width	Height	Duct
RECF 1.2 H	674	622	464	RECF 4.5 H	1564	797	601
RECF 1.6 H	674	622	464	RECF 6.0 H	2144	797	601
RECF 2.1 H	924	702	564	RECF 8.0 H	2144	797	601
RECF 2.7 H	924	702	564	RECF 10.0 H	2144	797	601
RECF 3.3 H	1264	757	601	5			

External coil modules for air treatment

MODULES WITH ELECTRIC HEATING ELEMENTS

These are outdoor modules with electric heating elements that can be included for pre-heating or post-heating the air.

		POST-HEATING		_	POST-HEATING			
Model	Power	Power supply	Current	Model	Power	Power supply	Current	
	(kW)	(V)	(A)		(kW)	(V)	(A)	
RECF 1.2 H	3.0	2 x 230	4.8	RECF 4.5 H	9.0	3 x 400	14.4	
RECF 1.6 H	4.5	3 x 400	7.2	RECF 6.0 H	12.0	3 x 400	19.2	
RECF 2.1 H	6.0	3 x 400	9.6	RECF 8.0 H	18.0	3 x 400	28.8	
RECF 2.7 H	6.0	3 x 400	9.6	RECF 10.0 H	24.0	3 x 400	38.4	
RECF 3.3 H	9.0	3 x 400	14.4					

MODULES WITH HEATING/COOLING COILS

Using water as the heat-carrying fluid, these modules can be connected to the equipment, or they can be installed in ducts for treating the incoming or outgoing air from the heat recovery units.

HEATING COILS	PRE-HEATING									
	Temp. Water inlet/outlet: 65 °C/55 °C		Ten	Temp. Air inlet: -5 °C			Temp. Water inlet/outlet: 45 °C/40 °C		Temp. Air inlet: 16 °C	
Model	Flow rate	Power	Air load loss	Water load loss	Water consumption	Power	Air load loss	Water load loss	Water flow rate	
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)	(kW)	(Pa)	(KPa)	(l/h)	
RECF 1.2 H	1200	13.61	26	5.7	1193	5.43	27	4.8	944	
RECF 1.6 H	1600	16.64	39	6.8	1460	6.63	40	5.7	1153	
RECF 2.1 H	2100	24.41	25	8.7	2141	9.8	26	6.9	1704	
RECF 2.7 H	2700	29.16	36	8.5	2557	11.69	37	8.4	2034	
RECF 3.3 H	3300	39.23	23	10	3441	15.77	23	7.9	2743	
RECF 4.5 H	4500	53.48	23	7.8	4690	21.49	23	6.4	3737	
RECF 6.0 H	6000	73.11	20	8.8	6412	29.42	21	8.8	5117	
RECF 8.0 H	8000	89.92	31	11.5	7887	36.15	31	9	6287	
RECF 10.0 H	10000	105.05	42	11.6	9214	42.2	43	10.9	7338	

DECACLIMA

HEATING COILS		POST-HEATING								
	Temp. Water inlet	/outlet: 65 °C/55 °C		Temp. Air inlet: 16 °C						
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate					
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)					
RECF 1.2 H	1200	9.03	27	4.3	792					
RECF 1.6 H	1600	11.02	40	4.8	967					
RECF 2.1 H	2100	16.31	26	5.7	1430					
RECF 2.7 H	2700	19.46	37	6.7	1706					
RECF 3.3 H	3300	26.27	23	8.9	2304					
RECF 4.5 H	4500	35.79	23	6.7	3139					
RECF 6.0 H	6000	48.99	21	7	4297					
RECF 8.0 H	8000	60.14	31	8.8	5275					
RECF 10.0 H	10000	70.19	43	8.4	6156					

POST-HEATING

	Temp. Water inlet/	outlet: 7 °C/12 °C	Temp. Air inlet: 26.5 °C				
Model	Flow rate	Power	Air load loss	Water load loss	Water flow rate		
	(m³/h)	(kW)	(Pa)	(KPa)	(l/h)		
RECF 1.2 H	1200	2.8	28	3.5	481		
RECF 1.6 H	1600	3.11	42	3.6	534		
RECF 2.1 H	2100	8.33	26	9.4	1429		
RECF 2.7 H	2700	9.74	38	11.5	1670		
RECF 3.3 H	3300	14.41	24	27.8	2472		
RECF 4.5 H	4500	18.53	24	12.4	3179		
RECF 6.0 H	6000	19.31	21	7.8	3312		
RECF 8.0 H	8000	28.58	32	9.1	4902		
RECF 10.0 H	10000	33.24	44	8.9	5703		

MODULES WITH DIRECT EXPANSION COILS FOR HEATING/COOLING Using R410a or R32a refrigerant as the heat-carrying fluid, these modules can be connected to the equipment or they can be installed in the duct, depending on the installation needs. They can be connected to VRF equipment.

	POST-COOLING								
	Temp. Water 45	inlet/outlet: °C	Temp. Air inlet: 16 °C	Temp. Evap.: 8 °C	Temp. Air inlet: 26 °C				
Model	Flow rate	Power	Air load loss	Power	Air load loss				
	(m³/h)	(kW)	(Pa)	(kW)	(Pa)				
RECF 1.2 H	1200	1.65	34	4.51	23				
RECF 1.6 H	1600	1.81	37	5.39	35				
RECF 2.1 H	2100	9.66	21	8.77	19				
RECF 2.7 H	2700	11.48	30	10.21	28				
RECF 3.3 H	3300	14.81	22	13.78	20				
RECF 4.5 H	4500	21.05	21	19.09	20				
RECF 6.0 H	6000	29.81	19	26.37	18				
RECF 8.0 H	8000	36.46	29	31.24	27				
RECF 10.0 H	10000	42.38	40	35.37	37				

Innovation in air treatment units

DECACLIMA COMFORT SOLUTIONS, S.L.

Avda. del Castell, 31 08570 Torelló (Barcelona) Tel. +34 930 130 703 info@decaclima.com

www.decaclima.com

